Effect of interstitial fluid on the fraction of flow microstates that precede clogging in granular hoppers.
نویسندگان
چکیده
We report on the nature of flow events for the gravity-driven discharge of glass beads through a hole that is small enough that the hopper is susceptible to clogging. In particular, we measure the average and standard deviation of the distribution of discharged masses as a function of both hole and grain sizes. We do so in air, which is usual, but also with the system entirely submerged under water. This damps the grain dynamics and could be expected to dramatically affect the distribution of the flow events, which are described in prior work as avalanche-like. Though the flow is slower and the events last longer, we find that the average discharge mass is only slightly reduced for submerged grains. Furthermore, we find that the shape of the distribution remains exponential, implying that clogging is still a Poisson process even for immersed grains. Per Thomas and Durian [Phys. Rev. Lett. 114, 178001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.178001], this allows for an interpretation of the average discharge mass in terms of the fraction of flow microstates that precede, i.e., that effectively cause, a stable clog to form. Since this fraction is barely altered by water, we conclude that the crucial microscopic variables are the grain positions; grain momenta play only a secondary role in destabilizing weak incipient arches. These insights should aid ongoing efforts to understand the susceptibility of granular hoppers to clogging.
منابع مشابه
The sands of time run faster near the end
Grains exiting an underwater silo exhibit an unexpected surge in discharge rate as they empty. This contrasts with the constant flow rate of dry granular hoppers and the decreasing flow rate of pure liquids. Here we find that this surge depends on hopper diameter and happens also in air. The surge can be turned off by fixing the rate of fluid flow through the granular packing. With no flow cont...
متن کاملCFD Modeling of the Feed Distribution System of a Gas-Solid Reactor
Granular flow simulation using CFD has received a lot of attention in recent years. In such cases, CFD is either, coupled with Discrete Element Method (DEM) techniques for appropriate incorporation of inter-particle collisions, or the Eulerian CFD approach is used in which granular particles are treated as they were fluid. In the present study, a CFD analysis was performed...
متن کاملOutflow and clogging of shape-anisotropic grains in hoppers with small apertures.
Outflow of granular material through a small orifice is a fundamental process in many industrial fields, for example in silo discharge, and in everyday's life. Most experimental studies of the dynamics have been performed so far with monodisperse disks in two-dimensional (2D) hoppers or spherical grains in 3D. We investigate this process for shape-anisotropic grains in 3D hoppers and discuss th...
متن کاملThe interface between fluid-like and solid-like behaviour in two-dimensional granular flows
The effective phase change from fluid behaviour to solid behaviour, that too often occurs in granular flow and brings with it such unwelcome events as funnel flows in hoppers and clogging of other material handling devices, is studied using a discrete particle computer simulation of a Couette flow with gravity. This simulation exhibits the full range of granular flow behaviour, from a stagnant ...
متن کاملGeometry dependence of the clogging transition in tilted hoppers.
We report the effects of system geometry on the clogging of granular material flowing out of flat-bottomed hoppers with variable aperture size D and with variable angle θ of tilt of the hopper away from horizontal. In general, larger tilt angles make the system more susceptible to clogging. To quantify this effect for a given θ, we measure the distribution of mass discharged between clogging ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 95 3-1 شماره
صفحات -
تاریخ انتشار 2017